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“Matter tells spacetime how to curve.”“Spacetime tells matter how to move.”

John Archibald Wheeler§8.7. GEODESIC DEVIATION AND RIEMANN CURVATURE TENSOR
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Figure 8.4.
A family of geodesics n). The selector parameter n tells "which" geodesic; the affine parameter
A tells "where" on a given geodesic. The separation vector n= jan at a point !1'(A, 0) along the
fiducial geodesic, n = 0, reaches (approximately) to the point I) with the same value of Aon the
test geodesic, n = I.

to him he quantifies by ""un. This relative velocity, like the separation vector n,
is an arbitrary "initial condition," Not arbitrary, however, is the "relative accelera-
tion," ""u ""un of the test particle relative to the observer (see Boxes 11.2 and 11.3).
It would be zero in flat spacetime. In curved spacetime, it is given by

""u ""un + Riemann (... , u, n, u) = 0,
or, in component notation,

Riemann curvature tensor
(8.42) defined by relative

acceleration of geodesics

(8.43)

This equation serves as a definition of the "Riemann curvature tensor;" and it can
also be used to derive the following expressions for the components of Riemann Components of Riemann
in a coordinate basis:

(8.44)
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2.2 Geodesic deviation in Newtonian gravity

Figure 3 is a (hugely exaggerated) cartoon illustration of two test particles that

are initially suspended at the same height above the Earth’s surface (assumed to

be spherical) and are released from rest. According to Newtonian physics, the

separation of these test particles will reduce as they freely fall towards the Earth,

because they are falling in a non-uniform gravitational field. (The gravitational force

on each particle is directed towards the centre of the Earth, which means that their

acceleration vectors are not parallel).

1P 2P
0ξ

)(tξ

Figure 3: Cartoon illustrating how in Newtonian physics the separation of test particles will

change in time if they are falling freely in a non-uniform gravitational field.

Suppose the initial separation of the test particles is ⇠0 and their distance from the

centre of the Earth is r0, while after some time t their separation is ⇠(t) and their

distance from the centre of the Earth is r(t). From similar triangles we can see that

⇠(t)

r(t)
=

⇠0

r0
= k (5)
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Newtonian Gravity in Einstein’s Language:
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Spacetime curvature gives rise to the 
relative acceleration of geodesics.

What we would get by purely
Newtonian considerations.
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G = 8⇡T





Gravitational Waves 
Given the physicality of spacetime in Einsteinian gravity, can it support waves?
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gµ⌫ = ⌘µ⌫ + hµ⌫
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Figure 120. Schematic figure describing the two polarizations of a gravitational wave. As the
gravitational wave propagates along the z axis, the proper distance changes due to the plus h+ and
cross h× modes of the gravitational wave as shown in this figure. Note that horizontal and vertical
directions express the x and y axis, respectively.

Finally, the eµν can be written in the following form:

eµν =





0 0 0 0
0 e11 e12 0
0 e12 −e11 0
0 0 0 0



 . (304)

So far, the spatial component of kµ is taken to be z axis. Equation (304) generally indicates
that eij with arbitrary kµ satisfies

eijδ
ij = 0 (Traceless), (305)

eij k
j = 0 (Transverse). (306)

It is noted that the above choice of the gauge is the so-called transverse-traceless (TT) gauge.
We will use it in the following and denote it by the superscript TT. The non-vanishing two
components of e11 and e22 are the true physical freedoms and we call them as the gravitational
wave in the following.

6.1.3. Polarization of gravitational waves. Here we discuss the polarization of the
gravitational wave. First of all, we pay attention to the two spatial components of the
gravitational wave propagating in +z direction, (hT T

µν in equation (304)):

hT T
ij =




h+ h× 0
h× −h+ 0
0 0 0



 . (307)

The metric, which expresses the superposition of the two plane waves, can be given by

ds2 = −dt2 + (1 + h+)dx2 + (1 − h+)dy2 + 2h×dxdy + dz2, (308)

where h+ = h+(ct − z) and h× = h×(ct − z) are the two polarization components. As seen
from the metric, the gravitational wave changes the proper distance in the plane (x − y plane)
perpendicular to the propagating direction (z axis). When the gravitational wave with h+ (plus
mode) propagates, the proper distance in the x axis becomes longer (shorter) and the one in
the y axis becomes shorter (longer) (see the top panel of figure 120).
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Gµ⌫ = 8⇡Tµ⌫
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k = (k0, 0, 0, k3)

Polarization Tensor (elements are constant in this case)
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Kotake et al. 2006 Rep. Prog. Phys. 69 971

Vacuum Case
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Gravitational Waves, Continued 
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nisms for gravitational wave emission from the proto-neutron
star are not all external to it. (2) Indirect evidence of the ex-
citation of g-modes within the proto-neutron star as the pri-
mary driver of high-frequency emission from it, the most com-
pelling of which is the evolution of the peak frequency (at
least in non-rotating models), is not sufficient to rule out other
significant drivers – e.g., Ledoux convection. An accurate
assessment of the origins of the gravitational wave emission
from the proto-neutron star – specifically, the high-frequency
emission – requires a spatial decomposition of the signal suf-
ficiently fine to capture all of the potential excitation mecha-
nisms. (3) Low-frequency gravitational wave emission from
neutrino-driven convection and the SASI emanates from both
the proto-neutron star, as a result of convection- and SASI-
modulated accretion onto it, and the gain region itself, as a
result of convective- and SASI-modulated flows there. The
dominance of one mode of excitation over the other depends
on the details of the explosion dynamics. Thus, in this case too
we can expect both internal and external excitations of grav-
itational waves in this part of the spectrum, as we go from
model to model.

It is with all of this in mind we now endeavor to understand
the gravitational wave emission and its origins in the three-
dimensional models presented here.

II. MODELS AND METHODS

A. Core Collapse Supernova Models

The three-dimensional core collapse supernova simulations
used for this study are part of the D-series of simulations
performed with the CHIMERA code [43], which will be pre-
sented in detail elsewhere [44, 45]. CHIMERA utilizes multi-
group flux-limited diffusion neutrino transport in the ray-by-
ray approximation, Newtonian self-gravity with a monopole
correction to account for the effects of general relativity,
Newtonian hydrodynamics, and a nuclear reaction network.
Neutrino–matter interactions in CHIMERA include electron
capture on protons and nuclei, the latter using the LMSH
capture rates, electron–positron annihilation, and nucleon–
nucleon bremsstrahlung, along with their inverse weak in-
teractions. The included scattering processes are coherent
isoenergetic scattering on nuclei, as well as neutrino–electron
(large-energy transfer) and neutrino–nucleon (small-energy
transfer) scattering. The equation of state for densities above
1011 g cm�3, is that of Lattimer and Swesty [46] with a bulk
incompressibility of K = 220 MeV. At lower densities the
equation of state is an enhanced version of that of Cooperstein
[47], used in conjunction with an active nuclear network [48]
at lower temperatures. Of particular note here, all three simu-
lations analyzed were performed using a Yin–Yang grid with
angular resolution equivalent to one degree in ✓ and �. Com-
plete details of the CHIMERA code and improvements that
were made to the code to perform the D-series simulations,
relative to the C-series simulations [2], are given in [43].

The simulations used for this study were all initiated from
non-rotating progenitors covering a range of mass and metal-

licity. The lightest progenitor used was a 9.6 M� model of
zero metallicity (A. Heger, private communication) evolved
as a low-mass extension of the Heger and Woosley [49] set.
CHIMERA simulation D9.6-sn160-3D was computed with a
160-species nuclear network and 540 radial zones [44]. The
other two progenitors are the 15 M� Solar-metallicity progen-
itor from Woosley and Heger [50] used in our previous study
[35] and a 25 M� zero-metallicity progenitor from Heger and
Woosley [49]. The corresponding CHIMERA simulations,
D15-3D and D25-3D, were computed with an alpha network
and 720 radial zones [45]. Given that all of the simulations
considered in this study were computed in 3D, we will shorten
the CHIMERA designations to D9.6, D15, and D25.

B. Gravitational Wave Extraction Methods

We employ the quadrupole approximation for extracting
the gravitational wave signals from the mass motions. We
begin with the lowest multipole (quadrupole) moment of the
Transverse-Traceless gravitational wave strain [51]
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The continuity equation can be used to eliminate the time
derivative in equation (11) in an effort to minimize the numer-
ical noise associated with computing the second time deriva-
tive of I2m numerically, by reducing the calculation in ad-
vance to computing the first time derivative of N2m numeri-
cally, which gives [52]
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and where we integrate over the source coordinates r0, #0 and
'
0. ra and rb are the inner and outer radial boundaries, respec-

tively, of the region for which we are calculating the strain.
For a whole-star calculation, ra = 0 and rb = 1. In this
case, the surface term, which is the last term in equation (12),

vanishes because ra = 0 and ⇢b = 0. Eggenberger Andersen
et al. [41] emphasized the fact that the surface term cannot be
neglected for ra and rb nonzero and finite. In this analysis,
we will compute A2m in three ways, by evaluating numeri-
cally (1) the second time derivative of I2m, (2) the first time
derivative of N2m, and (3) the first time derivative of N̄2m.
We will compare results obtained with all three methods in
Section III and discuss the limitations of all of them. Given
these limitations, we use method (3) throughout this paper to
guide our analysis, but we do so in light of its limitations, and
use it accordingly.

Finally, we compute the gravitational wave strains for both
polarizations, which are related to h

TT
ij by:
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The total luminosity emitted in gravitational waves is given
by [53]
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where the hi indicate averaging over several wave cycles. To
compute the spectral signatures, we must relate the gravita-
tional wave luminosity to its spectrum, using Parseval’s The-
orem:

Z +1

�1
|x(t)|2dt =

Z +1

�1
|x̃(2⇡f)|2df. (17)

Here, x̃(2⇡f) is the Fourier transform of x(t). The total en-
ergy emitted in gravitational waves is
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where the over-dot now represents the time derivative. The
time derivative of Ã2m in equation (18) can be eliminated us-
ing the standard property of Fourier transforms – i.e.,

| ˜̇A2m(2⇡f)|2 = (2⇡f)2|Ã2m(2⇡f)|2. (19)

Inserting equation (19) in equation (18) and taking the deriva-
tive with respect to frequency gives
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6.1.7. Quadrupole formula for supernovae. To end this section, we introduce the quadrupole
formula in a useful form, which is often used for the computation of gravitational wave from
core-collapse supernovae.

First of all, let us define the tensor f lm
ij ,
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where Ylm is the spherical harmonics.
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More compactly, the above equation may be written as
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namely, the angular dependence of the gravitational wave up to quadrupole can be expressed by
f 2m

ij (θ, φ). As we briefly mention in the following, f 2m
ij (θ, φ) is a part of the tensor spherical
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We have so far considered the gravitational wave up to the quadrupole. The gravitational

wave in all orders is shown to be expressed by the multiple expansions [349] in the following
form,
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where for the slow motion sources, the mass quadrupole and the mass-current quadrupole can
be expressed as follows.
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nisms for gravitational wave emission from the proto-neutron
star are not all external to it. (2) Indirect evidence of the ex-
citation of g-modes within the proto-neutron star as the pri-
mary driver of high-frequency emission from it, the most com-
pelling of which is the evolution of the peak frequency (at
least in non-rotating models), is not sufficient to rule out other
significant drivers – e.g., Ledoux convection. An accurate
assessment of the origins of the gravitational wave emission
from the proto-neutron star – specifically, the high-frequency
emission – requires a spatial decomposition of the signal suf-
ficiently fine to capture all of the potential excitation mecha-
nisms. (3) Low-frequency gravitational wave emission from
neutrino-driven convection and the SASI emanates from both
the proto-neutron star, as a result of convection- and SASI-
modulated accretion onto it, and the gain region itself, as a
result of convective- and SASI-modulated flows there. The
dominance of one mode of excitation over the other depends
on the details of the explosion dynamics. Thus, in this case too
we can expect both internal and external excitations of grav-
itational waves in this part of the spectrum, as we go from
model to model.

It is with all of this in mind we now endeavor to understand
the gravitational wave emission and its origins in the three-
dimensional models presented here.

II. MODELS AND METHODS

A. Core Collapse Supernova Models

The three-dimensional core collapse supernova simulations
used for this study are part of the D-series of simulations
performed with the CHIMERA code [43], which will be pre-
sented in detail elsewhere [44, 45]. CHIMERA utilizes multi-
group flux-limited diffusion neutrino transport in the ray-by-
ray approximation, Newtonian self-gravity with a monopole
correction to account for the effects of general relativity,
Newtonian hydrodynamics, and a nuclear reaction network.
Neutrino–matter interactions in CHIMERA include electron
capture on protons and nuclei, the latter using the LMSH
capture rates, electron–positron annihilation, and nucleon–
nucleon bremsstrahlung, along with their inverse weak in-
teractions. The included scattering processes are coherent
isoenergetic scattering on nuclei, as well as neutrino–electron
(large-energy transfer) and neutrino–nucleon (small-energy
transfer) scattering. The equation of state for densities above
1011 g cm�3, is that of Lattimer and Swesty [46] with a bulk
incompressibility of K = 220 MeV. At lower densities the
equation of state is an enhanced version of that of Cooperstein
[47], used in conjunction with an active nuclear network [48]
at lower temperatures. Of particular note here, all three simu-
lations analyzed were performed using a Yin–Yang grid with
angular resolution equivalent to one degree in ✓ and �. Com-
plete details of the CHIMERA code and improvements that
were made to the code to perform the D-series simulations,
relative to the C-series simulations [2], are given in [43].

The simulations used for this study were all initiated from
non-rotating progenitors covering a range of mass and metal-

licity. The lightest progenitor used was a 9.6 M� model of
zero metallicity (A. Heger, private communication) evolved
as a low-mass extension of the Heger and Woosley [49] set.
CHIMERA simulation D9.6-sn160-3D was computed with a
160-species nuclear network and 540 radial zones [44]. The
other two progenitors are the 15 M� Solar-metallicity progen-
itor from Woosley and Heger [50] used in our previous study
[35] and a 25 M� zero-metallicity progenitor from Heger and
Woosley [49]. The corresponding CHIMERA simulations,
D15-3D and D25-3D, were computed with an alpha network
and 720 radial zones [45]. Given that all of the simulations
considered in this study were computed in 3D, we will shorten
the CHIMERA designations to D9.6, D15, and D25.

B. Gravitational Wave Extraction Methods

We employ the quadrupole approximation for extracting
the gravitational wave signals from the mass motions. We
begin with the lowest multipole (quadrupole) moment of the
Transverse-Traceless gravitational wave strain [51]
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What causes such waves?

GW150914

Binary
Black
Hole

Mergers

@1.3 billion lyr! Abbott et al. 2016 PRL 116 061102

Time delay between Hanford and Livingston
detections consistent with gravitational wave 
propagation at the speed of light.



Gravitational Waves from Compact Binary Mergers: The Movie



What causes such waves?
GW170817
GRB170817A

Binary
Neutron
Star

Mergers

Abbott et al. 2017 PRL 119 161101

@150 million lyr

Observed by 70 observatories on 7 continents.



Laser Interferometer Gravitational Wave Observatory (LIGO)

LIGO Hanford

LIGO Livingston

Gravitational waves are quadrupolar.
In GW150914, interferometer arm length changed by 1/1000 the diameter of a proton!

Gravitational Wave Telescopes 

Gertsenshtein, M.E. (1962). "Wave Resonance of Light and Gravitational 
Waves". Soviet Physics – Journal of Experimental and Theoretical 
Physics. 14: 84.

Weiss, Rainer (1972). "Electromagnetically coupled broadband 
gravitational wave antenna". Quarterly Progress Report of the Research 
Laboratory of Electronics. 105 (54): 84.

https://dcc.ligo.org/P720002/public


Pre-supernova Structure

Core Collapse Supernovae: Stages to Catastrophe

Shock Stall

Shock Revival via Neutrino Heating

+ SASI!



Lentz et al. 2015 Ap.J. Lett. 807 31 

One of the first published
realistic 3D core collapse 
supernova models.

Boiling a Star with Neutrinos



Why We Care
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the result of continued neutrino-driven convection.
The 15 and 25 M� progenitor models exhibit the features

documented in [19]. For our 15 M� progenitor model, the
heat map reveals there is very little gravitational wave emis-
sion, at any frequency, until ⇠150 ms, after which the emis-
sion is characterized by two primary features: (1) high-
frequency emission above ⇠500 Hz, with peak frequency
increasing nearly linearly with time and (2) low-frequency
emission below ⇠250 Hz with multiple peak frequencies,
each corresponding to an important time period in the model.
The high-frequency feature corresponds to gravitational wave
emission from Ledoux convection and convective overshoot in
subregions 1 and 2 of the proto-neutron star. In this case the
convection is sustained and dominates the three-dimensional
character of the flow and, therefore, of the gravitational wave
emission as well. As the proto-neutron star evolves with post-
bounce time, the peak frequency of the gravitational wave
emission from these regions increases. The low-frequency
emission leads off with emission between ⇠40 Hz and ⇠80
Hz. This is consistent with strong SASI activity from both
the ` = 1 and m = 1 SASI modes. (See the plots of h̃+(f)
shown in Figure 12 and the associated discussion.) Does the
m = 1 SASI mode drop in and out during the course of our
run, or is it persistent? A second period of strong SASI activ-
ity occurs between 400 and 500 ms, bookending the period of
intermittent SASI activity between 300 and 400 ms. Intermit-
tent SASI activity then persists beyond 500 ms, throughout the
remainder of our run. The heat map for our 25 M� progenitor
model is similar in most respects to the heat map for our
15 M� progenitor model, with the exception that the high-
frequency emission remains more stochastic throughout our
run as the result of the different and more significant mass
accretion history in this model. Eric: Is it possible to put a
plot together that captures the different accretion histories of
the 15 and 25 M models? At low frequencies, the emission
is initiated between 100 and 150 ms post bounce and is con-
sistent with emission associated with convective and ` = 2
SASI activity, with peak frequency below ⇠60 Hz. (Again,
see the plots of h̃+(f) shown in Figure 12 and the associated
discussion.) This initial phase of low-frequency emission is
followed by steady emission between 150 and 200 ms post
bounce, at frequencies between ⇠60 Hz and ⇠125 Hz, con-
sistent with ` = 1 and m = 1 SASI activity. Afterward, ad-
ditional, intermittent SASI activity continues until ⇠400 ms
after bounce.

While the above discussion captures the primary features
of the gravitational wave emission, there is further informa-
tion contained within the heat maps that should be mined. For
example, looking at the heat map for our 15 M� progenitor
model, we can see the influence of initial and sustained causes
on the gravitational wave emission in regions other than the
regions in which the causes occur. Subregions 2 through 4
clearly bear the imprint of accretion from the gain region, sub-
region 5, resulting in gravitational wave emission below ⇠500
Hz. This imprint is drastically reduced after ⇠500 ms post
bounce, at which time explosion develops in this model, in
turn impacting the accretion of material from the gain region
onto the proto-neutron star. (In our 25 M� progenitor model,

accretion persists throughout the run.) Similarly, subregions
2 through 4 clearly bear the imprint of Ledoux convection in
subregion 1, resulting in gravitational wave emission above
⇠500 Hz at peak frequencies that increase with time. More-
over, after explosion at ⇠500 ms post bounce, there is a signif-
icant impact on the gravitational wave emission in subregion
2. Two things happen: (1) The emission at frequencies be-
low ⇠500 Hz ceases. (2) The high-frequency emission, with
rising peak frequency, becomes less stochastic. The overall
impact on the emission from subregion 2 can also be seen in
the reduction of the strain amplitudes at this time. The onset
of explosion is very visible in the heat maps for subregions 3
and 4, where there is a dramatic reduction in the gravitational
wave emission at any frequency after ⇠500 ms. On the other
hand, subregion 2 continues to produce high-frequency emis-
sion after explosion sets in, so the emission from this region
was never the result solely of excitation from above but rather
stemmed from a combination of convective overshoot associ-
ated with sustained Ledoux convection in subregion 1 and ac-
cretion, ultimately from subregion 5. That is, the contribution
of subregion 2 to the gravitational wave emission has been lo-
calized in our study, but its causes arise from deep within the
proto-neutron star and from the gain region as well, includ-
ing the shock. We can localize the gravitational wave emis-
sion from a specific subregion and identify its nonlocal causes
because we consider the information provided by all of the
subregions at once.

In all three models, explosion is represented by the very
low frequency emission below ⇠10 Hz, beginning at ⇠150
ms, ⇠500 ms, and ⇠250 ms after bounce for the 9.6, 15, and
25 M� models, respectively. This correlates well with the de-
velopment of the offsets in the strain amplitudes themselves,
shown in Figures 2 and 5, another marker of explosion.

Mueller et al. [27] derived a formula relating the peak fre-
quency of (high-frequency) gravitational wave emission to,
among other things, the mass and radius of the proto-neutron
star:
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Here, M , R, cs, and � are the proto-neutron star mass, proto-
neutron star radius, sound speed, and adiabatic index, respec-
tively. In the weak-field limit, we can write the spacetime
metric as
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With this in mind, we can express fp in terms of M , R, and
the lapse function, ↵, defined as
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Mueller, Janka, and Marek, Ap.J. 766 43 (2013)



Outlook
Gravitational waves and neutrinos are the only “messengers” that will bring us direct information about the core 
collapse supernova central engine:

• Progenitor Mass and Rotation
• Existence of Neutrino-Driven Convection
• Existence of the SASI
• Existence of Proto-Neutron Star (PNS) Instabilities and the Properties of the PNS and its Evolution
• High-Density, Neutron-Rich Nuclear Equation of State in the PNS

A Galactic event within 𝑂 10 kpc would be detectable, as would the neutrino signal.

The Volunteer supernova group is well positioned to provide theoretical input in preparation for this watershed event.

Third-Generation detectors will increase the distance at which a core collapse supernova gravitational wave signal is
detectable, to 𝑂(100) kpc.

Our fundamental limitation right now is the low Galactic core collapse supernova event rate. A rate of 1 core collapse 
supernova per year would require an additional two orders of magnitude increase in sensitivity beyond what is planned
for third-generation detectors.

Szczepanczyk et al. PRD 104 102002 (2021)

Srivistava et al. PRD 100, 043026 (2019)


