PHYS 615 – 616: General Relativity and Its Applications

Fall and Spring Semester, 2024 – 2025

Professor: Anthony Mezzacappa, 206 South College, 4-2621, mezz@utk.edu

Class Times: TTh, 12:55 – 2:10 Class Location: Ayres 114

Course Syllabus

- 1. Foundational Principles of General Relativity
- 2. The Mathematics of Tensors on Manifolds (Introducing the Fundamental Mathematical Building Blocks of General Relativity)
 - a. Open Sets
 - b. Topology
 - c. Maps (Into, Onto, Continuous)
 - d. Homeomorphisms
 - e. Manifolds
 - f. Coordinates
 - g. Charts
 - h. Atlases
 - i. Differentiable Manifolds
 - i. Curves on Manifolds
 - k. Functions on Manifolds
 - 1. Vectors on Manifolds
 - m. Covectors on Manifolds
 - n. Tensors on Manifolds
- 3. Riemannian Manifolds (Introducing the Metric Tensor)
- 4. Geodesics on Manifolds (Introducing the Covariant Derivative)
- 5. Local Inertial Frames, Free-Falling Frames
- 6. The Riemann Curvature Tensor (Introducing Curvature on Manifolds)
- 7. The Relative Acceleration of Geodesics on Curved Manifolds
- 8. The Bianchi Identities and the Einstein Tensor
- 9. The Einstein Field Equations
- 10. The Newtonian Limit
- 11. Spherically Symmetric Solution to the Einstein Field Equations: The General Case
- 12. The Interior Schwarzschild Solution (Introducing the Equations of General Relativistic Hydrostatic Equilibrium, The Spatial Geometry Visualized: Embeddings)
- 13. The Exterior Schwarzschild Solution
- 14. Killing Vectors
- 15. Gravitational Redshift in the Exterior Schwarzschild Spacetime
- 16. Orbits in the Exterior Schwarzschild Spacetime
 - a. Orbits of a Test Mass
 - b. Precession of the Perihelion of Mercury
 - c. Light Ray Orbits
 - d. Deflection of Light in the Exterior Schwarzschild Spacetime
 - e. Gravitational Lensing
 - f. Shapiro Time Delay
- 17. The Black Hole Lectures
 - a. The Schwarzschild Black Hole in Schwarzschild Coordinates
 - b. The Schwarzschild Black Hole in Eddington–Finkelstein Coordinates
 - c. Geodetic Completeness: The Schwarzschild Black Hole in Kruskal–Szekeres Coordinates (Introducing White Holes and Wormholes)

- d. Linearized (Weak Field) General Relativity
- e. Exterior Metric of a Slowly Rotating Source
- f. Dragging of Inertial Frames
- g. Axisymmetric Spacetimes: Generalities
- h. Exterior Kerr (Black Hole) Spacetime
- i. Orbits in the Exterior Kerr Spacetime
- 18. Gravitational Waves
- 19. Cosmology
 - a. Survey of the Universe
 - b. Robertson-Walker Metric
 - c. Friedmann Equations
 - d. Critical Density, Curvature, Singularities, and Fate of the Universe
 - e. Time Evolution of Robertson-Walker Spacetimes
 - f. Need for a Theory of Initial Conditions
 - g. Physics of Inflation
 - h. Fluctuations in the Cosmic Microwave Background

Course Texts

My lectures will draw primarily from the following texts, especially the three highlighted:

- 1. Cheng, Relativity, Gravitation, and Cosmology
- 2. D'Inverno and Vickers, *Introducing Einstein's Relativity*
- 3. Hartle, Gravity, An Introduction to Einstein's General Relativity
- 4. Misner, Thorne, and Wheeler, Gravitation
- 5. Schutz, A First Course in General Relativity
- 6. Shapiro and Teukolsky, Black Holes, White Dwarfs, and Neutron Stars
- 7. Frankel, *The Geometry of Physics*
- 8. Schutz, Geometrical Methods of Mathematical Physics

Office Hours: TTh, 4:00 – 5:00

Grades: Grades will be based on graded homework assignments.